50字范文,内容丰富有趣,生活中的好帮手!
50字范文 > 黎曼流形与黎曼几何初步-笔记

黎曼流形与黎曼几何初步-笔记

时间:2023-03-13 15:59:49

相关推荐

黎曼流形与黎曼几何初步-笔记

黎曼流形与黎曼几何初步-笔记

参考书籍:陈维桓《微分流形初步》,陈省身《微分几何》讲义

前置要求:代数结构,线性代数,张量代数,微分流形的初步了解

黎曼几何是现代几何学的重要概念,其理论已经深刻应用于广义相对论、机器学习。流形(manifold)是一种定义在集合论上的概念。流形上的几何,当然不能用欧式空间中的常识来看。事实上,介绍黎曼几何完全不需要依赖于欧式几何,而是依赖集合论的——甚至说如果要经常借用欧式几何中的概念来类比,反倒会代入一堆惯性思维,同时也会给严格的数学阐述造成麻烦。(例如,第一步我们就丢掉了欧式空间中向量的基的模糊定义,把切向量定义为一个映射,将切向量空间及其对偶空间间更好地统一起来(这个定义不在本文中介绍,为前置知识))。因此在学习黎曼几何时应该先摒弃欧式几何中的直观,才能有正确的认识,而在必要时,对二维流形的想像则会帮助一个形象的理解。

设(M,g)(M,g)(M,g)是一个mmm维黎曼流形,ggg是MMM上的基本度量张量,即一个正定的、非退化、二阶协变张量。设v∈X(M)v\in \mathscr{X}(M)v∈X(M),X(M)\mathscr{X}(M)X(M)表示MMM上的全体向量场集合。

内积与弧长

首先介绍黎曼流形上的内积与弧长的概念,因为它们比较简单,可以直接由度量ggg得到。

黎曼流形上的两个切向量X,Y∈TpMX,Y\in T_pMX,Y∈Tp​M内积定义为g(X,Y)=gijXiYig(X,Y)=g_{ij}X^iY^ig(X,Y)=gij​XiYi。那么对于切向量的模长和夹角也有了对应的定义∣∣X∣∣=g(X,X)12,cos⁡∠(X,Y)=g(X,Y)∣∣X∣∣⋅∣∣Y∣∣||X||=g(X,X)^{1\over2},\cos\angle (X,Y)={g(X,Y)\over||X||\cdot||Y||}∣∣X∣∣=g(X,X)21​,cos∠(X,Y)=∣∣X∣∣⋅∣∣Y∣∣g(X,Y)​。

二次微分式

ds2=gijdxidxj\mathbb ds^2=g_{ij}\mathbb dx^i\mathbb dx^j ds2=gij​dxidxj

它与局部坐标系的选取无关

一个参数曲线(γ(t))i=xi(t)(\gamma(t))^i=x^i(t)(γ(t))i=xi(t)的弧长

s=∫t0t1gij(dxidtdxjdt)dts=\int_{t_0}^{t_1}\sqrt{g_{ij}\left({\mathbb dx^i\over \mathbb dt}{\mathbb dx^j\over \mathbb dt}\right)}dt s=∫t0​t1​​gij​(dtdxi​dtdxj​)​dt

切向量的变换关系

接下来我们首先探讨切向量、切向量的微分在坐标之间的变换关系,从而比较自然地说明协变微分算子、黎曼联络是如何被提出的。

设⟨U;xi⟩\langle U;x^i\rangle⟨U;xi⟩是一个局部坐标系,切向量vvv有局部坐标表达式

v∣U=vi∂∂xiv|_U=v^i {\partial\over \partial x^i} v∣U​=vi∂xi∂​

其中vi∈C∞(U)v^i\in C^\infty(U)vi∈C∞(U),若有另一个局部坐标系⟨V;yi⟩\langle V;y^i \rangle⟨V;yi⟩,vvv在其上局部坐标表达式

v∣V=v~i∂∂yiv|_V=\tilde v^i {\partial \over \partial y^i} v∣V​=v~i∂yi∂​

在这两个局部坐标系之间的变换关系为

v~i=vj∂yi∂xj\tilde v^i=v^j{\partial y^i\over \partial x^j} v~i=vj∂xj∂yi​

类似的坐标变换称作遵循反变向量的变换规律.

上式微分得

dv~i=dvj∂yi∂xj+vj∂2yr∂xj∂xkdxk\mathbb{d}\tilde v^i=\mathbb{d}v^j{\partial y^i\over \partial x^j}+v^j{\partial^2 y^r\over \partial x^j\partial x^k}dx^k dv~i=dvj∂xj∂yi​+vj∂xj∂xk∂2yr​dxk

这说明在一般的微分算子d\mathbb{d}d下,dvi\mathbb{d}v^idvi并不符合反变向量的变换规律。这也是要引入协变微分算子的初衷之一。我们设法用黎曼张量的分量来表达∂2yr∂xj∂yk\partial^2 y^r\over \partial x^j \partial y^k∂xj∂yk∂2yr​。求度量张量ggg在两个坐标下的变换关系,并代换为克氏记号Γ\GammaΓ,(略去证明过程直接给出)引理

∂2yr∂xj∂xj=Γijk∂yr∂xk−Γ~pqr∂yp∂xi∂yq∂xj{\partial^2 y^r\over \partial x^j \partial x^j}=\Gamma_{ij}^k{\partial y^r \over \partial x^k}-\tilde \Gamma^r_{pq} {\partial y^p \over \partial x^i}{\partial y^q \over \partial x^j} ∂xj∂xj∂2yr​=Γijk​∂xk∂yr​−Γ~pqr​∂xi∂yp​∂xj∂yq​

由此,命

Dvi=dvi+ΓjkivjdxkDv^i=\mathbb{d}v^i+\Gamma_{jk}^iv^j \mathbb{d}x^k Dvi=dvi+Γjki​vjdxk

DviDv^iDvi就遵循反变向量的变换规律,即Dv~i=Dvj∂yi∂xjD\tilde v^i=Dv^j{\partial y^i\over \partial x^j}Dv~i=Dvj∂xj∂yi​.

协变微分与协变导数

对切向量的一个分量的微分定义如上,定义:协变微分DvDvDv,在局部坐标系UUU下

Dv∣U=Dvi⊗∂∂xi=(∂vi∂xk+viΓjki)dxk⊗∂∂xiDv|_U=Dv^i\otimes{\partial\over \partial x^i}=({\partial v^i\over \partial x^k}+v^i\Gamma_{jk}^i)\mathbb{d}x^k\otimes {\partial\over\partial x^i} Dv∣U​=Dvi⊗∂xi∂​=(∂xk∂vi​+viΓjki​)dxk⊗∂xi∂​

DvDvDv是MMM上的(1,1)(1,1)(1,1)型光滑张量场(在每一点处,坐标有m2m^2m2个),可以看做以1次微分式为分量的切向量场。,对于X∈X(M)X\in\mathscr X(M)X∈X(M)命

DXv=Xk(∂vi∂xk+vjΓjki)∂∂xiD_Xv=X^k\left({\partial v^i\over\partial x^k}+v^j\Gamma^i_{jk}\right){\partial \over \partial x^i} DX​v=Xk(∂xk∂vi​+vjΓjki​)∂xi∂​

这就定义了一个光滑切向量场DXvD_XvDX​v。(DXv)(p)(D_Xv)(p)(DX​v)(p)就表示在ppp点处切向量场vvv关于方向X(p)X(p)X(p)的导数。其中形式∂vi∂xk+vjΓjki{\partial v^i\over\partial x^k}+v^j\Gamma^i_{jk}∂xk∂vi​+vjΓjki​非常常见,所以我们为了简便,记作

v,ki=∂vi∂xk+vjΓjkiv^i_{,k}={\partial v^i\over\partial x^k}+v^j\Gamma^i_{jk} v,ki​=∂xk∂vi​+vjΓjki​

简记后,就有

DXv=Xkv,ki∂∂xiD_Xv=X^kv^i_{,k}{\partial\over \partial x^i} DX​v=Xkv,ki​∂xi∂​

如果不是给定在整个流形MMM上的切向量场XXX,而是在ppp点对于给定的切向量X∈TpMX\in T_p MX∈Tp​M,同上定义了DXv∈TpMD_Xv\in T_pMDX​v∈Tp​M,称为光滑切向量场vvv关于切向量XXX的协变导数.

设X,Y,Z∈X(M)X,Y,Z\in\mathscr X(M)X,Y,Z∈X(M),协变微分算子DDD有如下重要的性质:

DX(λ1Y+λ2Z)=λ1DXY+λ2DXZ,λ1,λ2∈RD_X(\lambda_1Y+\lambda_2 Z)=\lambda_1D_XY+\lambda_2D_XZ, \ \ \lambda_1,\lambda_2\in\RDX​(λ1​Y+λ2​Z)=λ1​DX​Y+λ2​DX​Z,λ1​,λ2​∈RDX(f⋅Y)=X(f)⋅Y+f⋅DXY,f∈C∞(M)D_X(f\cdot Y)=X(f)\cdot Y+f\cdot D_XY,\ \ f\in C^\infty(M)DX​(f⋅Y)=X(f)⋅Y+f⋅DX​Y,f∈C∞(M)DX+YZ=DXZ+DYZD_{X+Y}Z=D_XZ+D_YZDX+Y​Z=DX​Z+DY​ZDfXZ=f⋅DXYD_{fX}Z=f\cdot D_XYDfX​Z=f⋅DX​YX(g(Y,Z))=g(DXY,Z)+g(Y,DXZ)X(g(Y,Z))=g(D_XY,Z)+g(Y,D_XZ)X(g(Y,Z))=g(DX​Y,Z)+g(Y,DX​Z)DXY−DYX=[X,Y]D_XY-D_YX=[X,Y]DX​Y−DY​X=[X,Y]

黎曼流形上的平行

与欧式空间的直观平行不同,欧式空间只需要一套gij=δijg_{ij}=\delta_{ij}gij​=δij​的坐标系,就可以保证在该坐标系的自然基是平行的,所以欧式空间中的平行非常直观。抛弃直观平行,我们利用协变导数的定义,接下来可以定义流形上的平行

定义:设黎曼流形(M,g)(M,g)(M,g)上γ:[0,l]→M\gamma:[0,l]\to Mγ:[0,l]→M是一条光滑曲线,X∈X(M)X\in\mathscr X(M)X∈X(M),如果XXX在曲线上任意一点关于曲线切方向的协变导数000,即

Dγ′(t)X=0,∀t∈[0,l]D_{\gamma'(t)}X=0,\ \ \ \forall t\in[0,l] Dγ′(t)​X=0,∀t∈[0,l]

则称切向量场XXX沿曲线γ\gammaγ是平行的。类似的也可以定义分段沿光滑曲线的平行。

这个平行的定义是非常切合实际的,在物理上最小作用量原理决定了很多物理规律在黎曼时空中的推广就是平行的推广。此外,可以明显地感受到平行的许多具体性质是符合直觉的。

**定理:**对于给定一个初始的切向量方向v(0)v(0)v(0),决定了唯一的沿曲线γ\gammaγ平行的切向量场v(t)v(t)v(t)。

平行移动还会保持切向量的内积、模长、夹角不变,若X(t),Y(t)X(t),Y(t)X(t),Y(t)是两个切向向量沿同一个曲线的平行移动,则g(X(0),Y(0))=g(X(t),Y(t))g(X(0),Y(0))=g(X(t),Y(t))g(X(0),Y(0))=g(X(t),Y(t)),此处亦略过证明。一个切向量沿自身的方向平行移动还会产生一个测地线,但要深入地讨论测地线,我门还需要进一步的知识。

黎曼联络

在前面对协变微分算子的定义中,记号DDD是根据度量张量ggg构造的。我们能明显注意到DDD的很多特征,完全可以基于这些微分算子的特征,将其看做是一种定义在流形上的结构,而不必要求它是它从度量张量ggg诱导出来的。我们把满足下列条件的映射D:X(M)×X(M)→X(M)D:\mathscr X(M)\times\mathscr X(M)\to\mathscr X(M)D:X(M)×X(M)→X(M),称作光滑流形MMM上的一个联络

DX(λ1Y+λ2Z)=λ1DXY+λ2DXZ,λ1,λ2∈RD_X(\lambda_1Y+\lambda_2 Z)=\lambda_1D_XY+\lambda_2D_XZ, \ \ \lambda_1,\lambda_2\in\RDX​(λ1​Y+λ2​Z)=λ1​DX​Y+λ2​DX​Z,λ1​,λ2​∈RDX(f⋅Y)=X(f)⋅Y+f⋅DXY,f∈C∞(M)D_X(f\cdot Y)=X(f)\cdot Y+f\cdot D_XY,\ \ f\in C^\infty(M)DX​(f⋅Y)=X(f)⋅Y+f⋅DX​Y,f∈C∞(M)DX+YZ=DXZ+DYZD_{X+Y}Z=D_XZ+D_YZDX+Y​Z=DX​Z+DY​ZDfXZ=f⋅DXYD_{fX}Z=f\cdot D_XYDfX​Z=f⋅DX​Y

其中X,Y,Z∈X(M)X,Y,Z\in \mathscr X(M)X,Y,Z∈X(M)。可以看出DDD在每一点处是线性的。如果对一个光滑流形指定一个联络DDD,就成(M,D)(M,D)(M,D)是一个仿射联络空间

联络DDD具有局部性,这是指DXY(p)D_XY(p)DX​Y(p)只与X,YX,YX,Y在ppp点及其附近一个开邻域有关,与远处的一点无关。严格地来表达,有如下引理:设X1,X2,Y1,Y2∈X(M)X_1,X_2,Y_1,Y_2\in \mathscr X(M)X1​,X2​,Y1​,Y2​∈X(M),存在一个开子集UUU,使得X1∣U=X2∣U,Y1∣U=Y2∣UX_1|_U=X_2|_U,Y_1|_U=Y_2|_UX1​∣U​=X2​∣U​,Y1​∣U​=Y2​∣U​,则DX1Y1∣U=DX2Y2∣UD_{X_1}Y_1|_U=D_{X_2}Y_2|_UDX1​​Y1​∣U​=DX2​​Y2​∣U​。引理的证明略。

接下来我们就开始讲述联络具体而言与克氏记号、度量张量等联系。把联络放在具体的局部坐标系(U;xi)(U;x^i)(U;xi)下,则D∂∂xj∂∂xi∈X(M)D_{\partial \over \partial x^j}{\partial \over \partial x^i}\in\mathscr X(M)D∂xj∂​​∂xi∂​∈X(M),我们同样使用符号Γijk\Gamma^k_{ij}Γijk​,命:

D∂∂xj∂∂xi=Γijk∂∂xkD_{\partial \over \partial x^j}{\partial \over \partial x^i}=\Gamma_{ij}^k{\partial \over \partial x^k} D∂xj∂​​∂xi∂​=Γijk​∂xk∂​

其中Γijk∈C∞(M)\Gamma^k_{ij}\in C^\infty(M)Γijk​∈C∞(M). 把 Γijk\Gamma^k_{ij}Γijk​称为联络DDD在自然标架场{∂∂xi}\{{\partial \over \partial x^i}\}{∂xi∂​}下的系数。根据前面联络的定义所要求的性质,给定一个局部坐标系就可以这样表达:

DXY∣U=DX∣U(Y∣U)=XjD∂∂xj(Yi∂∂xi)=Xj(∂Yi∂xj+YkΓkji)∂∂xiD_XY|_U=D_{X|_U}(Y|_U)=X^jD_{\partial \over \partial x^j}\left(Y^i{\partial \over \partial x^i}\right)=X^j\left({\partial Y^i\over \partial x^j}+Y^k\Gamma_{kj}^i\right){\partial \over \partial x^i} DX​Y∣U​=DX∣U​​(Y∣U​)=XjD∂xj∂​​(Yi∂xi∂​)=Xj(∂xj∂Yi​+YkΓkji​)∂xi∂​

形式和协变微分算子定义完全相同。事实上,前面黎曼度量ggg诱导出的协变微分算子DDD,就是一个特殊的联络,而克氏记号Γijk\Gamma^k_{ij}Γijk​就是其联络系数。

设(Uα;xαi),(Uβ;xβi)(U_\alpha;x_\alpha^i),(U_\beta;x_\beta^i)(Uα​;xαi​),(Uβ​;xβi​)是MMM的两个局部坐标系,且Uα∩Uβ≠∅U_\alpha\cap U_\beta\neq\emptyUα​∩Uβ​​=∅。则联络系数Γ\GammaΓ的这两个局部坐标系之间有变换公式:

Γij(α)k∂xβr∂xαk=Γpq(β)r∂xβp∂xαi∂xβq∂xαj+∂2xβr∂xαixαj\Gamma_{ij}^{(\alpha)k}{\partial x_\beta^r\over\partial x_\alpha ^k}=\Gamma_{pq}^{(\beta)r}{\partial x_\beta^p\over\partial x_\alpha ^i}{\partial x_\beta^q\over\partial x_\alpha ^j}+{\partial^2 x_\beta^r\over\partial x_\alpha ^i x_\alpha ^j} Γij(α)k​∂xαk​∂xβr​​=Γpq(β)r​∂xαi​∂xβp​​∂xαj​∂xβq​​+∂xαi​xαj​∂2xβr​​

给定一个联络,和一个坐标覆盖,那么联络在每个坐标下的联络系数就确定了。反过来,如果给了一个(满足上面坐标变换关系的)光滑函数Γij(α)k\Gamma^{(\alpha)k}_{ij}Γij(α)k​,也确定了唯一的联络DDD,使得其在相应自然标架场{∂∂xαi}\{{\partial \over \partial x^i_\alpha}\}{∂xαi​∂​}下的联络系数为Γij(α)k\Gamma^{(\alpha)k}_{ij}Γij(α)k​。注意,暂时我们对联络系数Γijk\Gamma^k_{ij}Γijk​还没有提出什么特殊要求。

下面定义扰率的概念

定理:命T(X,Y)=DXY−DYX−[X,Y]T(X,Y)=D_XY-D_YX-[X,Y]T(X,Y)=DX​Y−DY​X−[X,Y],则T:X(M)×X(M)→X(M)T:\mathscr X(M)\times\mathscr X(M)\to \mathscr X(M)T:X(M)×X(M)→X(M)是MMM上(1,2)(1,2)(1,2)型张量场,称为(M,D)(M,D)(M,D)上的扰率张量。对于这一点,我们只需证明TTT对于每个自变量是C∞(M)C^\infty(M)C∞(M)的线性映射,这里就略去详细证明。

扰率的分量

Tijk=dxk(T(∂∂xi,∂∂xj))=dxk(D∂∂xi∂∂xj−D∂∂xj∂∂xi)=dxk(Γijl∂∂xl−Γjil∂∂xl)=Γijk−ΓjikT^k_{ij}=\mathbb{d}x^k\left(T({\partial \over\partial x^i},{\partial \over\partial x^j})\right)\\ =\mathbb{d}x^k\left(D_{\partial \over\partial x^i}{\partial \over\partial x^j}-D_{\partial \over\partial x^j}{\partial \over\partial x^i}\right)\\ =\mathbb{d}x^k\left(\Gamma_{ij}^l{\partial \over\partial x^l}-\Gamma_{ji}^l{\partial \over\partial x^l}\right)\\ =\Gamma_{ij}^k-\Gamma_{ji}^k Tijk​=dxk(T(∂xi∂​,∂xj∂​))=dxk(D∂xi∂​​∂xj∂​−D∂xj∂​​∂xi∂​)=dxk(Γijl​∂xl∂​−Γjil​∂xl∂​)=Γijk​−Γjik​

因此,扰率张量关于自然标架下的表达式

T=(Γijk−Γjik)∂∂xk⊗dxi⊗dxjT=(\Gamma_{ij}^k-\Gamma_{ji}^k){\partial \over\partial x^k}\otimes \mathbb{d}x^i\otimes\mathbb{d}x^j T=(Γijk​−Γjik​)∂xk∂​⊗dxi⊗dxj

我们称扰率为000的联络是无扰的。从上式就可以直接看出,一个联络DDD无扰的充要条件是它在任何一个自然标架场下的联络系数Γijk\Gamma^k_{ij}Γijk​关于下指标i,ji,ji,j是对称的。无扰是联络的重要性质,黎曼度量ggg诱导的协变微分算子就是一个无扰联络,这个联络称为和ggg是相容的,并且仅存在唯一的无扰联络DDD与ggg相容。下面我们给出相容联络的定义,需要首先引入联络对于张量的运算的概念。

给定了切向量场X∈X(M)X\in \mathscr X(M)X∈X(M),则DXD_XDX​是X(M)→X(M)\mathscr X(M)\to\mathscr X(M)X(M)→X(M)的映射。我们也可以定义DXD_XDX​在MMM上对任意光滑张量场的作用,只要约定:

DXD_XDX​在任意(r,s)(r,s)(r,s)型光滑张量场的作用结果仍然是一个(r,s)(r,s)(r,s)型张量

DXD_XDX​在张量积上的作用遵循Leibniz法则,即对于K,L∈Tsr(M)K,L\in\mathscr{T}^r_s(M)K,L∈Tsr​(M),有

DX(K⊗L)=(DXK)⊗L+K⊗(DXL)D_X(K\otimes L)=(D_XK)\otimes L+K\otimes(D_XL) DX​(K⊗L)=(DX​K)⊗L+K⊗(DX​L)

DXD_XDX​与张量的缩并运算CCC是可交换的,即对于MMM上的光滑张量场KKK有DX(C(K))=C(DXK)D_X(C(K))=C(D_XK)DX​(C(K))=C(DX​K)

按照上述约定就不难得到MMM上的任意光滑张量场的协变导数,且不难验证它的下列性质:

对于τ,μ∈Tsr(M)\tau,\mu\in \mathscr T^r_s(M)τ,μ∈Tsr​(M),有

DX(τ+μ)=DXτ+DXμ,DX(λ⋅τ)=λDXτD_X(\tau+\mu)=D_X\tau+D_X\mu,\ \ D_X(\lambda\cdot \tau)=\lambda D_X\tauDX​(τ+μ)=DX​τ+DX​μ,DX​(λ⋅τ)=λDX​τDX(f⋅τ)=X(f)DXτ+f⋅DXτD_X(f\cdot \tau)=X(f)D_X\tau+f\cdot D_X\tauDX​(f⋅τ)=X(f)DX​τ+f⋅DX​τDX+Yτ=DXτ+DYτD_{X+Y}\tau=D_X\tau+D_Y\tauDX+Y​τ=DX​τ+DY​τDf⋅Xτ=f⋅DXτD_{f\cdot X}\tau=f\cdot D_X\tauDf⋅X​τ=f⋅DX​τ

下面我们也直接给出DXτD_X\tauDX​τ在局部坐标系(U;xi)(U;x^i)(U;xi)的自然标架场{∂∂xi}\{{\partial\over\partial x^i}\}{∂xi∂​}的表达,而略过推导过程(推导并不困难,只需要根据上述性质,推导出对应基的坐标即可)。设在该标架场的联络系数Γijk\Gamma^k_{ij}Γijk​,设τ\tauτ的坐标表达为

τ∣U=τj1...jsi1...ir∂∂xi1⊗...⊗∂∂xir⊗dxj1⊗...⊗dxjs\tau|_U=\tau^{i_1...i_r}_{j_1...j_s}{\partial\over\partial x^{i_1}}\otimes ...\otimes{\partial\over\partial x^{i_r}}\otimes\mathbb{d}x^{j_1}\otimes...\otimes \mathbb{d}x^{j_s} τ∣U​=τj1​...js​i1​...ir​​∂xi1​∂​⊗...⊗∂xir​∂​⊗dxj1​⊗...⊗dxjs​

DXτ=Xkτj1...js,ki1...ir∂∂xi1⊗...⊗∂∂xir⊗dxj1⊗...⊗dxjsD_X\tau=X^k\tau^{i_1...i_r}_{j_1...j_s,k}{\partial\over\partial x^{i_1}}\otimes ...\otimes{\partial\over\partial x^{i_r}}\otimes\mathbb{d}x^{j_1}\otimes...\otimes \mathbb{d}x^{j_s} DX​τ=Xkτj1​...js​,ki1​...ir​​∂xi1​∂​⊗...⊗∂xir​∂​⊗dxj1​⊗...⊗dxjs​

注意第二个式子,其中:

τj1...js,ki1...ir=∂τj1...jsi1...ir∂xk+∑a=1rΓlkiaτj1...jsi1...l...ir−∑b=1rΓjbklτj1...l...jsi1...ir\tau^{i_1...i_r}_{j_1...j_s,k}={\partial \tau^{i_1...i_r}_{j_1...j_s}\over \partial x^k}+\sum_{a=1}^r \Gamma^{i_a}_{lk}\tau^{i_1...l...i_r}_{j_1...j_s}-\sum_{b=1}^r \Gamma^{l}_{j_bk}\tau^{i_1...i_r}_{j_1...l...j_s} τj1​...js​,ki1​...ir​​=∂xk∂τj1​...js​i1​...ir​​​+a=1∑r​Γlkia​​τj1​...js​i1​...l...ir​​−b=1∑r​Γjb​kl​τj1​...l...js​i1​...ir​​

特别地,对于黎曼度量张量ggg,

DXg=Xkgij,kdxi⊗dxjD_Xg=X^kg_{ij,k}\mathbb{d}x^i\otimes\mathbb d x^j DX​g=Xkgij,k​dxi⊗dxj

其中

gij,k=∂gij∂xk−Γiklglj−Γjklgilg_{ij,k}={\partial g_{ij}\over\partial x^k}-\Gamma_{ik}^lg_{lj}-\Gamma_{jk}^lg_{il} gij,k​=∂xk∂gij​​−Γikl​glj​−Γjkl​gil​

若Dg=0Dg=0Dg=0,则称联络DDD与度量ggg是相容的。黎曼流形上存在唯一确定的与黎曼度量张量ggg相容的无扰联络,即协变微分算子,称作Christoffel-Levi-Civita联络,或黎曼联络。(黎曼几何的基本定理)

用活动标架来讨论联络,设{ei}\{e_i\}{ei​}是开集UUU上的局部坐标架场,对偶的余标架场ωi\omega^iωi,设

Dejei=Γijkekωik=ΓijkωjD_{e_j}e_i=\Gamma_{ij}^ke_k\\ \omega_i^k=\Gamma_{ij}^k\omega^j Dej​​ei​=Γijk​ek​ωik​=Γijk​ωj

Dei=ωikekD_{e_i}=\omega_i^ke_k Dei​​=ωik​ek​

ωik\omega_i^kωik​称作联络形式

定义扰率形式,命

Ωi=dωi−ωj∧ωji\Omega^i = \mathbb d\omega^i-\omega^j\wedge \omega^i_j Ωi=dωi−ωj∧ωji​

Ωi=12Tjkiωj∧ωk\Omega^i={1\over 2}T_{jk}^i\omega^j\wedge \omega^k Ωi=21​Tjki​ωj∧ωk

其中TjkiT_{jk}^iTjki​是扰率张量在局部坐标架{ei}\{e_i\}{ei​}下的分量。扰率张量可以写为

T∣U=ei⊗ΩiT|_U=e_i\otimes\Omega^i T∣U​=ei​⊗Ωi

用联络形式来表达有一个推论,无扰联络的充要条件是联络形式满足方程dωi=ωj∧ωji\mathbb d\omega^i=\omega^j\wedge\omega^i_jdωi=ωj∧ωji​。

定义曲率形式

R∣U=ωj⊗ei⊗ΩjiR|_U=\omega^j\otimes e_i\otimes \Omega^i_j R∣U​=ωj⊗ei​⊗Ωji​

其中

Ωji=dωji−ωj∧ωk=12Rjkliωk∧ωl\Omega_j^i=\mathbb d\omega^i_j-\omega^j\wedge \omega^k={1\over2}R_{jkl}^i\omega^k\wedge\omega^l Ωji​=dωji​−ωj∧ωk=21​Rjkli​ωk∧ωl

曲率张量

设DDD是黎曼流形(M,g)(M,g)(M,g)上的黎曼联络,对于任意的X,Y,Z∈X(M)X,Y,Z\in \mathscr X(M)X,Y,Z∈X(M),命

R(X,Y)Z=DXDYZ−DYDXZ−D[X,Y]ZR(X,Y)Z=D_X D_Y Z-D_YD_XZ-D_{[X,Y]}Z R(X,Y)Z=DX​DY​Z−DY​DX​Z−D[X,Y]​Z

由上式定义的映射R:X(M)×X(M)×X(M)→X(M),(X,Y,Z)→R(X,Y)ZR:\mathscr{X}(M)\times\mathscr{X}(M)\times\mathscr{X}(M)\to\mathscr{X}(M),(X,Y,Z)\to R(X,Y)ZR:X(M)×X(M)×X(M)→X(M),(X,Y,Z)→R(X,Y)Z是光滑流形MMM上的(1,3)(1,3)(1,3)型光滑张量场,称为曲率张量场

容易验证其关于张量的相关性质。这里也是直接跳过证明,直接给出RRR在局部坐标系(U;xi)(U;x^i)(U;xi)下的表达。

R=Rkijldxk⊗∂∂xi⊗dxi⊗dxjR=R_{kij}^l\mathbb dx^k\otimes{\partial\over\partial x^i}\otimes\mathbb dx^i\otimes\mathbb dx^j R=Rkijl​dxk⊗∂xi∂​⊗dxi⊗dxj

其中

Rkijl=dxl(R(∂∂xi,∂∂xj)∂∂xk)=∂Γkjl∂xi−∂Γkil∂xj+ΓkjhΓhil−ΓkihΓhjlR_{kij}^l=\mathbb dx^l\left(R\left({\partial\over\partial x^i},{\partial\over\partial x^j}\right){\partial\over\partial x^k}\right) ={\partial \Gamma^l_{kj}\over\partial x^i}-{\partial \Gamma^l_{ki}\over\partial x^j}+\Gamma^h_{kj}\Gamma^l_{hi}-\Gamma^h_{ki}\Gamma^l_{hj} Rkijl​=dxl(R(∂xi∂​,∂xj∂​)∂xk∂​)=∂xi∂Γkjl​​−∂xj∂Γkil​​+Γkjh​Γhil​−Γkih​Γhjl​

若给定X,Y∈X(M)X,Y\in\mathscr X(M)X,Y∈X(M),则R(X,Y):X(M)→X(M)R(X,Y):\mathscr X(M)\to\mathscr X(M)R(X,Y):X(M)→X(M)成为MMM上的(1,1)(1,1)(1,1)型张量场,即

R(X,Y)=XiYjRkijldxk⊗∂∂xlR(X,Y)=X^iY^jR^l_{kij}\mathbb dx^k\otimes{\partial\over\partial x^l} R(X,Y)=XiYjRkijl​dxk⊗∂xl∂​

称R(X,Y)R(X,Y)R(X,Y)为曲率算子

定义:黎曼流形(M,g)(M,g)(M,g)上,设X,Y,Z,W∈X(M)X,Y,Z,W\in\mathscr X(M)X,Y,Z,W∈X(M),命

R(X,Y,Z,W)=g(R(Z,W)X,Y)R(X,Y,Z,W)=g(R(Z,W)X,Y) R(X,Y,Z,W)=g(R(Z,W)X,Y)

则称R:X(M)×X(M)×X(M)×X(M)→C∞(M)R:\mathscr X(M)\times\mathscr X(M)\times\mathscr X(M)\times\mathscr X(M)\to C^\infty(M)R:X(M)×X(M)×X(M)×X(M)→C∞(M)是MMM上的4阶协变张量场,称为黎曼曲率张量场

上面定义了两个曲率张量场,一个是(1,3)(1,3)(1,3)型张量,一个是(0,4)(0,4)(0,4)型张量,都采用了记号RRR,不会引起混淆。本质上可以看做是同一个张量场的不同表现形式。在系数上,二者有如下关系:

Rklij=R(∂∂xk,∂∂xl∂∂xi,∂∂xj)=g(R(∂∂xi,∂∂xj)∂∂xk,∂∂xl)=g(Rkijh∂∂xh,∂∂xl)=glhRkijhR_{klij}=R\left({\partial\over\partial x^k},{\partial\over\partial x^l}{\partial\over\partial x^i},{\partial\over\partial x^j}\right) =g\left(R\left({\partial\over\partial x^i},{\partial\over\partial x^j}\right){\partial\over\partial x^k},{\partial\over\partial x^l}\right) =g\left(R_{kij}^h{\partial\over\partial x^h},{\partial\over\partial x^l}\right) =g_{lh}R_{kij}^h Rklij​=R(∂xk∂​,∂xl∂​∂xi∂​,∂xj∂​)=g(R(∂xi∂​,∂xj∂​)∂xk∂​,∂xl∂​)=g(Rkijh​∂xh∂​,∂xl∂​)=glh​Rkijh​

反过来就是

Rkijl=glhRkhijR^l_{kij}=g^{lh}R_{khij} Rkijl​=glhRkhij​

黎曼曲率张量具有如下性质

R(X,Y,Z,W)=−R(Y,X,Z,W)=−R(X,Y,W,Z)R(X,Y,Z,W)=-R(Y,X,Z,W)=-R(X,Y,W,Z)R(X,Y,Z,W)=−R(Y,X,Z,W)=−R(X,Y,W,Z)R(X,Y,Z,W)=R(Z,W,X,Y)R(X,Y,Z,W)=R(Z,W,X,Y)R(X,Y,Z,W)=R(Z,W,X,Y)R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z)=0R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z)=0R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z)=0(Bianchi恒等式

黎曼曲率张量的系数有相应的性质

Rklij=−Rlkij=−RkljiR_{klij}=-R_{lkij}=-RkljiRklij​=−Rlkij​=−RkljiRklij=RijklR_{klij}=R_{ijkl}Rklij​=Rijkl​Rklij+Rkijl+Rjli=0R_{klij}+R_{kijl}+R_{jli}=0Rklij​+Rkijl​+Rjli​=0

定理:黎曼曲率张量处处为000的流形,为局部欧式空间。在局部欧式空间中,存在一个局部坐标系使得g=dxi⊗dxjg=\mathbb dx^i\otimes\mathbb dx^jg=dxi⊗dxj,即gij=δjig_{ij}=\delta^i_jgij​=δji​。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。