50字范文,内容丰富有趣,生活中的好帮手!
50字范文 > 牛顿法和高斯牛顿法对比

牛顿法和高斯牛顿法对比

时间:2018-10-10 19:51:35

相关推荐

牛顿法和高斯牛顿法对比

文章目录

一、非线性最小二乘一、牛顿法二、高斯牛顿法三、列文伯格-马夸尔特法(LM)四、ceres求解优化问题

一、非线性最小二乘

考虑最小二乘函数F(x), 其等于:

通过求F(x)导数为零,获得x的最优值

求解这个非线性最小二乘的方法可以是牛顿法、高斯牛顿法、梯度下降法、列文伯格-马夸尔特法等

一、牛顿法

用目标函数的二阶泰勒展开近似该目标函数,通过求解这个二次函数的极小值来求解凸优化的搜索方向。

1、将F(x)在xk处进行泰勒展开,即:

此时,状态的更新式子为:

即此时求解的式子变为:

其中J为雅可比矩阵,即一阶导数矩阵

H为黑塞矩阵

通过求解上面线性方程,得到增量,叫牛顿法。

2、牛顿法具有超线性收敛性质,证明如下:

当获得最优值时,令导数为零,即

等式左右分别乘以

可得:

证毕

二、高斯牛顿法

高斯牛顿和牛顿法的区别在于牛顿法是对目标函数F二次偏导的迭代;高斯牛顿是分解目标函数F为f’*f后对f的一次偏导的迭代。

即此时不对F(x)展开,而是对f(x)展开,即

将上式变形为下面式子

可见和牛顿法获得了相同的等式形式。

但是此时H使用J^T * J近似;g = -J^T * f(x)

g函数是F(x)的一阶导数的转置,可见高斯牛顿和牛顿法的联系与区别

高斯牛顿方法虽然使用了雅可比矩阵乘积近似黑塞矩阵计算,但是雅可比矩阵乘积为奇异矩阵,此时会出现算法不收敛问题。

三、列文伯格-马夸尔特法(LM)

高斯牛顿法具有奇异性,即其可以在展开值附近有较好的优化结果,适合用于无约束优化。

LM针对高斯牛顿法的奇异性,增加了拉格朗日因子,保证了等式左边即HX始终正定。

此时优化问题变为

上式子的补充说明:

其中后面增加的那项就是通过拉格朗日乘子法,增加的拉格朗日因子约束。

拉格朗日乘子法是求优化函数f(x1,x2,x3,…,xn)在g(x1,x2,…xn)的约束条件下的极值方法。主要的思想是引入一个新的微小参数(拉格朗日乘子),将约束条件函数和原函数联系起来,使能配成与状态量数目相等的等式方程,保证等式的正定性。for an example:

对于优化函数f(x1,x2,x3,…,xn)的约束条件为A(x1,x2,x3,…,xn) = B;

设g(x1,x2,x3,…,xn)=B-A(x1,x2,x3,…,xn)

此时最小二乘优化函数变为

此时

变为

为简化计算,通常将D设为单位阵

其中H后面增加项(阻尼因子)会影响优化问题的梯度下降速度(收敛速度)。

如果阻尼因子较大,下降速度加快,如果阻尼因子减少,下降速度变慢。为了更好地选择这个阻尼因子,LM算法引入了比例因子,即:

也就是说比例因子等于(实际差值)/(近似差值)

其中比例因子分母始终大于0,如果:

比例因子小于0,那么表示F(X)递增,此时与我们设计思路违背,即不符。

马夸尔特设置了一个阻尼因子策略如下:

四、ceres求解优化问题

这里面的ceres::Solver::Options设置了非线性优化的求解器的以下设置,可以选择高斯牛顿或者LM等求解方法

//// Created by xiang on 18-11-19.//#include <iostream>#include <opencv2/core/core.hpp>#include <ceres/ceres.h>#include <chrono>using namespace std;// 代价函数的计算模型struct CURVE_FITTING_COST {CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {}// 残差的计算template<typename T>bool operator()(const T *const abc, // 模型参数,有3维T *residual) const {residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]); // y-exp(ax^2+bx+c)return true;}const double _x, _y; // x,y数据};int main(int argc, char **argv) {double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值int N = 100; // 数据点double w_sigma = 1.0; // 噪声Sigma值double inv_sigma = 1.0 / w_sigma;cv::RNG rng; // OpenCV随机数产生器vector<double> x_data, y_data;// 数据for (int i = 0; i < N; i++) {double x = i / 100.0;x_data.push_back(x);y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));}double abc[3] = {ae, be, ce};// 构建最小二乘问题ceres::Problem problem;for (int i = 0; i < N; i++) {problem.AddResidualBlock(// 向问题中添加误差项// 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(new CURVE_FITTING_COST(x_data[i], y_data[i])),nullptr, // 核函数,这里不使用,为空abc // 待估计参数);}// 配置求解器ceres::Solver::Options options;// 这里有很多配置项可以填options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; // 增量方程如何求解options.minimizer_progress_to_stdout = true; // 输出到coutceres::Solver::Summary summary;// 优化信息chrono::steady_clock::time_point t1 = chrono::steady_clock::now();ceres::Solve(options, &problem, &summary); // 开始优化chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "solve time cost = " << time_used.count() << " seconds. " << endl;// 输出结果cout << summary.BriefReport() << endl;cout << "estimated a,b,c = ";for (auto a:abc) cout << a << " ";cout << endl;return 0;}

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。